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1 7 3 8 0  /? 
A physical interpretation of the Landau damping is given based on the Vlasov equations. It is shown that 

Landau’s discussion and Kidal’s calculation of resonant energy absorption are equivalent. It is also found 
possible to compare the analysis based on the Vlasov equations to Dawson’s intuitive formulation. -. - 

1. INTRODUCTION 

problem of plasma oscillations has been dis- 

solution by Landau who used the Laplace transform 
method, had shown that in general a damping exists. 
For a collision-free plasma, this phenomenon seems 
rather puzzling. 

I n  an attempt Wsterpret  the origin of such damping 
several theories h$><been proposed, namely (1) electron 
trapping: (2) phase mixing3 and (3) resonant energy 
ab~orption.~ 

I n  general, the firit two theories are difficult to main- 
tain. Some of the -&ument can be seen from the 
examples given by Sim011.~ The explanation based on 
energy absorption by resonant electrons is likely the 
most reasonable theoty. Recently Dawson6 has given a 
fairly thorough discussion on this subject. Using the 
resonant energy absorption model. he is able to show 
the Landau damping in an intuitive formulation. 
Furthermore, several points regarding the theory given 
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by who considered the electron trapping 
model, are also clarified in his discussion. Quite inde- 
pendently, Kida14(b).7 attempted to explain the Landau 
damping based on a similar model but started with a 
different mathematical formulation. He calculated the 
energy absorption A.4, Le., 

where ( ) denotes mean value in time and the subscript 
“av” denotes average in space. The damping coe5cient 
y is then determined from the assumption that the time 
rate of decay of the wave energy mustrequal the ab- 
sorbed energy. The general results contained in his two 
papers are interesting, but there are a few disagreements 
with previously existing results. For example, the 
Landau damping in the case of pure longitudinal oscilla- 
tions obtained by him is different by a factor 4 from 
that found by Landau.8 He mentioned that the reason 
for this deviation may be the different methods of 
approach. This is not true as is shown later in this note. 

The present note makes some remarks on the same 
subject and may suggest a physically clearer view of 
Landau’s work. I n  the following, we see that the disper- 
sion relation in Landau’s work,y 

1 aFo 

k2no ( u - - W / K )  au 
5 1  --du-l=o’ 

is equivalent to some energy relation. Our discussion is 

A. Kidal, J. Nuclear Energy (Part C) 3, 256 (1961). 

Notation is explained in later discussion. 

* Actually the difference is by a factor ( -+) ( -I ) ,  as we shall 
see later. 
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based on the Vlasov equations. However, we see that 
some of the discussion is comparable with Dawson's 
theory. It is the author's opinion that if Landau damp- 
ing is a physically sensible phenomenon, we ought to 
be able to explain it within the scope of the Vlasov 
equations. This is the main purpose of the following 
discussion. 

2. ENERGY CONSERVATION AND 
DISPERSION RELATION 

It is not difficult to show that in the absence of 
external fields, the linearized Vlasov equations can be 
decoupled into longitudinal and transverse components. 
I n  the present discussion, we consider only the longi- 
tudinal component since Landau damping does not 
appear in transverse waves. 

The longitudinal component of the linearized Vlasov 
equations actually contains three equations 

-= - h e  v fldav. (4) aE1 ai I 
where f l  and El are the perturbed distribution function 
and field, respectively, and fo is the equilibrium distri- 
bution function. It is important to remark that ( 3 )  and 
(4) are not independent; therefore we can iolve the 
problem of longitudinal oscillation by wing Eq. ( 2 )  to- 
gether with either ( 3 )  or (4). It is true t h a ~  ( 2 )  and (,$ 
are commonly used. 

If we multiply both sides of (4) by El, we obtain 

Clearly, (5) states the conservation of energy corre- 
sponding to  the first order quantities. The right-hand 
integral gives the average work done by the electrical 
field on the electrons or simply the energy transferred 
to the electrons'" per unit time per unit volume, and the 
left side gives the time rate of change of the electrical 
field energy density. If we take the average in space and 

1" We will corifinc our discussion to the "damped wave" solution 
only. In gcncral, of course, there may exist "growing wave" 
solutions. Evidently, the nature of the solutions is dictatctl Iby the 
equilibrium distribution function Z;". I1 has bcen shown by I:. Ikrz 
[Proc. Phys. Soc. (London) B69,939 (1056)] and J. I). J :~ksoiP( '~ l  
that for a11 isotropic or single-huin~~cd I;", the growiiix w:tvc 
solution cannot exist. 1\11 these discussiuiis arc' l,eywitl t lie WJIW 

of the present paper iiricl  thrrcforr iirc oiiiittetl. 

I 
I in time of Eq. ( S ) ,  we obtain 

a E: 

(--) at 
=-e(J'E1.vjl(v)d%) tlV = - A i l ,  (6) 

which is precisely the relation used by Kidal who arrived 
a t  this relation by int~ition.~(b) 

Since Eq. ( 3 )  and Eq. (6) are essentially equivalent, 
we conclude that Landau's solution must satisfy (6). 
However, in the folIowing, we give an alternative 
discussion on Landau damping so that its physical 
origin is easily displayed. 

Let us consider a particular Fourier component of the 
wave5. AS we know, if we assume 

11- exp[i (ka- - w l )  1, 
El- exp[i (kz- 41, 

where k is taken to be in the x direction, we can get the 
same dispersion relation as that based on the Laplace 
transform method provided the singular integral is 
properly defined. Then from Eq. ( 2 ) ,  fl is determined 

ic a jo  
(7)  - Ji- 

m k ( u - w / k )  at1 

I t  can be easily shown that the well-known diq-"4on 
relation, 

W p 2  1 a E ' 0  

1--/ , vPz , ,  ( t t - W / ~ )  atl 4 u  = 0, 
(8) 

is obtainable from ( 5 )  or (6). In (S), u is the velocity 
component parallel to k and 

where vl is the vector component of v normal to k. C' 
denotes the Landau contour.l(a) That is, if the root w / k  
is located in the upper half of the complex u plane the 
contour is along the real u axis, and if the root w/k is 
in the lower half-plane the contour is first along the 
real u axis and then around the point u=w/h as shown 
in Fig. 1. However, we are not particularly interested 
in doing this. Our discussion is mainly concerned with 
Eq. (6) which is physically more tractable. 
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FIG. 1. Landau contour. 

integral in Eq. (9) up to O ( y ) .  Thus 

a E,“ iwp2 E? u aFo 
-du 

at 8~ kno 4~ s -, u-o/k au 
--=--- ~ 

I 

aiio y w , a ~ ~ o  
--dU+T-- - 

ktto 4 r  k2 du2 

1 aFo 

21 a2Fo 

where P denotes principal value. For definiteness, we 
have considered that y is positive here. However, 
according to the similar definition of the singular 
integral given by Landau, it can be easily shown that 
the present analysis is also valid for negative y. 

Furthermore, i t  must be remarked here that in order 
to do this calculation correctly we definitely ought to  
keep the terms up to O(yE1~/4r)  in the expansion (at 
least for the imaginary part of the integral). It can be 
seen that if the last two terms are ignored, we get the 
incorrect result : 

I 
I 

aFo 
y=-- ( 1 1 )  

It is instructive to compare Eq. (10) with Dawsoii’s 
analysis6 For convenience, we also imagine that the 
plasma may be divided into two parts : the main plasma 
and the resonant electrons. The main plasma consists 
of all the electrons with velocities 2 ~ # w , ’ k ,  and the 
rcsonanl electrons posie+ the phase velocity of 1111. 
\ V ~ V C ,  I I  w,’k. l‘heii, it 11uy hc vi\uaiizrcl ~ l i , i t  .tlu.i- 

Lion of the principal part of each of the above intcgrnls 
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is equivalent physically to considering only the main 
plasma and excluding the resonant electrons. 

Furthermore, since the last two terms have coeffi- 
cients of O(y), we only need to  evaluate the two inte- 
grals to zeroth order in y. 

We shall make use of the following expressions : 

2k2no 
=- +Oh>,  ( 1 3 )  

w,2[1- (k /wr)  (dwrldk)]  

where (13) is obtainable froin ( 1 2 )  by integration by 
parts. These two terms in Eq. (10) represent part of the 
contribution from the main plasma. 

Since we are only interested in computing the damp- 
ing coefficient, we need only to  consider Eq. ( 1 0 )  in the 
following form : 

( 1 4 )  

where relations (12 )  and (13) have been employed. 
The right-hand term, which originally came from the 

&function term in the Dirac relation when we expanded 
the integral in Eq. (9), is the energy absorbed by the 
resonant electrons. Thus 

y=-----I 7rw,2wr aFo ( I - - - ) .  k dw, (15) 

kor very long waveiengths, the ratio of the group 
velocity dw,/dk and the phase velocity w,/k becomes 
so small that (15) gives essentially Landau’s approxi- 
mate result11 if we insert 

2k%0 au ,rcw,lk w, dk  

It is interesting to remark that we have the effective 
longitudinal-wa\ie energy density in the main plasma : 

E 12 uvd,e=- - __ 
8 ~ [ 1 -  (k /w, )  (dwJdk) ]  ’ 

which, ;LS well its the result for the resonant absorption, 
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is in perfect agreement with that calculated by Dawson 
through an intuitive formulation. 

The discussion of the short-wavelength case based on 
the same model can be done similarly. However, we 
shall omit it since physically the problem is not 
interesting. 

4. DISCUSSION OF KIDAL’S CALCULATION 

As mentioned a t  the beginning of this paper, the 
calculation of Landau damping by Kidal gives a result 
with a factor 4 missing. But in fact the deviation is more 
than this. I n  Kidal’s discussionI2 the perturbed distribu- 
tion function f, has an  incorrect leading sign. If we make 
this correction, his result for Landau damping would 
differ from Landau’s result by a factor -4. However, 
he considers 

W=Wr-ZY,  

and integrates the energy absorption integral, 
m 

AA = - e  du (f(u)Eu),,, 

along the real axis in the u plane without using the 
Landau contour. This introduces a second error of bign 
in front of the term related to the 6 function, and therc- 
fore eventually the deviation is by a factor (-+)(- 1). 
The main error which rebults in the incorrect damping 
coefficient is duc to the fact that during the comput;itioti 
of the resonant energy absoi,)tion, i.c., 

I, 

02 

A A =  --(EO’ exp(-2yt)) 
2uT 

1 

, (16) 
y{ l+[(ku-w*)/y-y) 

Kidal approximates ( r y {  l+[(kz~--~,)/y]~})-~ by the 6 
function & ( K u - - w , ) .  This implies that the integral i5 
only evaluated to zeroth order in y. A5 wc nicntioiwtl 
before, this is not correct. LVe mu5t computv the prin- 
cipal part in addition to  the &-function part. M i t h  all 
these remarks the correct c\pres\ion for A.1 shoukl 
thus be 

e2 Y 

This first integral is evidently equivalent to the last 
two terms in Eq. (10) of our previous discussion. (Note : 
Here Fo is Maxwellian). 

5. CONCLUSIONS 

The present note has presented a physical interpreta- 
tion of Landau’s dispersion relation,l3 with the following 
results : 

(1) Landau’s dispersion re1ation:and Kidal’s calcula- 
tion of energy absorption have been shown to be 
essentially equivalent. 

(2) A brief comparison with Dawson’s analysis has 
been made and the general results are in complete 
agreement. 

(3) The errors in Kidal’s calculation have been 
pointed out. 

Since in the linearized theory it is required that 

><(A)’= T ,  (trapping time), 

the trapping theory, as pointed out by Dawson pre- 
viously, is not acceptable*to explain the Landau damp- 
ing which is found in the linear theory. The origin of 
the damping is mainly due to the energy absorption of 
the resonant electrons. However, one remark which 
should be made here is that from the result for the 
damping coefficient we see that, in order to havo damp- 
ing well deiined for a finite time interval, we must have 
a continuous distribution Fo(u)  a t  least in the vicinity 
of ZL=W,/K. This is certainly reasonable. Since, for a 
discrete distribution, 

Y klEole 

Fo(?L)=Sjzl-ww,jk) ,  

the resonant electrons will be out of phase wi th  the  
wave after absorbing energy from the wave and k i n g  
iiccclerat ed during an infinitesimal time interval. 
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See, for instance, reference 4(b), 15q. (25). 


